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Abstract—The pressure differences between pipe inlet and run, Ap,_,, and inlet branch, Ap,._;,
were measured for air-water and steam-water flow in a T-junction with equal diameters and a
horizontal, vertical upward or downward branch. The experimental results are compared with those
previously published and a model presented herein. The agreement is good for the horizontal and
vertical downward branch; however, no model predicts satisfactorily the pressure drop in the upward
branch flow

1. INTRODUCTION

When a flow is divided in a T-junction the deceleration of the fluid causes a reversible
pressure rise in the run and in the branch due to the Bernoulli effect. However, in our
experiment the reversible pressure rise in the branch was smaller than the irreversible pressure
drop; therefore, the resultant pressure difference Ap,_; between inlet and branch has a
positive sign and is equivalent to a pressure drop, whereas in the run the irreversible pressure
drop is considerably smaller and therefore Ap,._, typically has a negative sign, characterizing
a pressure rise (the subscripts 1, 2, or 3 refer to the inlet, run, or branch conditions).

If a two-phase flow is divided, in general, phase separation occurs. The degree of phase
separation must be known to model the pressure differences. In Part I of this article results
on phase separation were presented, whereas in this part the corresponding pressure dif-
ference results are discussed.

Only a few experiments were performed previously with elaborate differential pressure
measurements along the axis of the inlet, branch, and run of the pipe which enable us to
properly separate the T-junction pressure differences from the frictional and gravitational
pressure differences.

Fitzsimmons (1964) performed steam-water experiments with a horizontal 7-junction
(all pipes in a horizontal plane) with inlet mass fluxes 1000 < G < 5000 kg/m?2s. However,
only the mass flux ratio G;/G, equal to unity was investigated. Chisholm (1967) used these
data for deriving his pressure drop model, presented in section 2.

Saba & Lahey (1982, 1984) reported on air-water experiments with a horizontal
T-junction. The inlet mass fluxes were G, = 1350, 2035, and 2700 kg/m?s and the mass
flux ratios were G;/G, = 0.3, 0.5, and 0.7. The models derived by these authors to predict
the pressure differences will also be discussed in section 2.

Reimann & Seeger (1983) presented a model for the branch pressure drop Ap,_; and
compared the predictions with air—water experiments using a horizontal T-junction. In this
article this model is extended to predict also the pressure difference Ap,_,. This model and
other models are compared with measurements in air—water and steam—water flow.

2. SINGLE-PHASE FLOW

The pressure differences Ap,_, and Ap,_, are commonly written as a sum consisting
of the reversible pressure increase and the irreversible pressure drop (see e.g. VDI 1984;
Collier 1976):

Ap,_, = (Apl—z)m + (Apl—l)m' ’ (1]
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with i = 2 for the run and : = 3 for the branch, where

1 (G? G})
D =5 - 2
(Ap;-) 2(P1 oy {2]
and
_x. (CL
(Apl—l)m _Kll (2P|)’ [3]

where p is the fluid density, K|, and K, are loss coefficients depending on the mass flux
ratio G, /G, which corresponds to a volume flow rate ratio V;/V,.

Another method to model the pressure difference Ap,_; is to split it into a reversible
pressure difference Ap,.., between inlet 1 and the throat of the vena contracta ¢, and a
pressure difference Ap,,—; between c; and a position 3 downstream in the branch, modeled
according to a sudden expansion (compare figure 1). Therefore we get

1 (G%3 G%)
b =3[0 - = 4
1 2. " py (4]
and
Gt G,G,
33 = - . 5
Ap.,-; _P3 ""_P3 (5]

By eliminating G., using the relationship for the conservation of mass and by intro-
ducing a contraction coefficient C; = A./A4, where A is the total cross section, we obtain

for p.; = pa>
2
1(G§ G%) (1 )G§
== -+ t=-1] —. 6
Ap,-; 2\ps C, 2ps [6]

Comparing [1]-[3] with [6] results in the following relationship between C, and X;:

i

c3=(1+\/§?%\/1<_,3)-. (7]
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Figure 1 Two-phase through a 7-junction
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For incompressible flow p, is equal to p;. A comparison of C;, determined from two-
dimensional potential theory (compare, e.g. Sallet & Popp 1983) and the right side of 7],
using experimental results for X,; shows good agreement. Therefore, this procedure for
modeling the pressure drop seems to be physically reasonable and will be applied later.

If in an analogous way the pressure difference Ap, _ , is modeled, relationships identical
to [6] and [7] are obtained except that the index 3 is replaced by the index 2. The existence
of a vena contracta in the run (compare figure 1) is impressively shown in the textbook of
Hackeschmidt (1970).

3. PREVIOUS MODELS FOR TWO-PHASE FLOW IN T-JUNCTIONS

3.1 Relationships for Ap,_;
The pressure drop Ap,_; is expressed according to [1]. The reversible pressure increase
in its general form is written as (Saba & Lahey 1982)

G
(813w = "7(‘,—3- _ f—*) i8]

where the homogeneous (p,,) and the energy (p,,) densities are given by

-1
x, l—x,
=+ — 9
Pa I:Pc bz :| 9
and
x? (1 "‘.x')3 1 -
o = + ’ 10
P L; it —am] 1ol

where x is the quality, a the void fraction, and p, and pg the liquid and gas density.
For homogeneous flow (p, = p,), [8] reduces to

oo =22 -]

The irreversible pressure drop for homogeneous flow is written as
Bp\-3)iw = K3 57—, [12]

where K, is taken from single-phase flow experiments. The homogeneous model, termed
in the following HM, is the sum of [11] and [12]. .

Chisholm (1967) proposed a different relationship for (Ap,_;),, which takes into
account to a certain extent a velocity ratio § > 1:

81w = Koy 5%“ ) ( I+ C;;;’ + )—;,-) [13]

with

Lo (o))
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and

05

e - A
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For nonhomogeneous flow C§ = 1.75 is proposed; for homogeneous flow (C* = 1)
[13] reduces to [12].

In the following the sum of [8] and [13] will be termed the Chisholm model (CM).

Saba & Lahey (1982) obtamned the best agreement of their experimental data and
predictious with the homogeneous model.

Katsaounis ef al. (1983) developed another model for the pressure drop Ap,_; which
also compared with the present data. This model yields satisfactory results for the mass
flux ratio G,/G, = 1 For other mass flux ratios, this model was inadequate since 1t
predicted even larger values than the Chisholm and homogeneous models, and therefore
will not be discussed.

3.2 Relationship for Ap, _,
Saba & Lahey (1982) proposed a relationship which differs significantly from [1]. It
1s given in the general form as

1{{G3 G?
Ap,-, =K1‘zi[(p—2)~(ﬁ-l—):|, [16]

where K, is a pressure recovery coefficient determined from single-phase data and Pm 1S
the momentum density given by

— ( x? + (1 _xl)2 1) ] {17]

aPg l-a; p,

m,

For correlating their data, Saba & Lahey used this relationship. However, they assumed a
homogeneous flow:

Kb (ﬂ—ﬂ) (18]

4 AN IMPROVED MODEL FOR TWO-PHASE FLOW IN A T-JUNCTION

4.1 General formulation

Again, the pressure drop Ap,_; is split into a reversible pressure difference
(Ap -c)., and a pressure difference Ap,,_, according to a sudden expansion (compare
figure 1). The conservation of energy for a nondissipative two-phase mixture with different
phase velocities u; and u; gives

1 1 .
(pl - pca) V3 = EmGJ (u%;q - u%?l) + EmLs (ui;, - uil) ’ [19]

where m is the mass flow rate. Using fundamental relations such as

ug = 281, [20]
a;Pg
uy, = 2% G [21]

l_alpL’
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&= x, + (S,/R)( —xi)’

(22]

where S, is the velocity ratio S; = ug,/u;,, R the density ratio R = p,/pg, and assuming
that x_, = x,, [19] becomes

G} 1 -
Ap,_, = ;—"; —C—,%(ng + S, (1-x,)? (x; + Sle)
pL 3 €3 [23]
1 -
- G% (XIR + S](l - x,))z (x; + _Szx_l) .
1
The pressure difference for a sudden expansion is given by (Collier 1976)
(pe, - P3) Ay = g, (ug, — ug,) + ry, (uy, —uy,). (24]
Introducing [20]-[22] into [24] gives
G 1 -x
Ap,—; = G 3R + §;(1 - x3)) (Xs + 3)
PL S; [25]

1 1-x
_C_a(st + 5.1 - x,) (x, + g a) .

As in [7], the contraction coefficient C, is defined as

. -1
C, = (1 + \/&Y—‘VK”) , [26]
Pum Vs

where K5 is taken from single-phase flow experiments as a function of the volume flow
rate ratio V,/V,.

The corresponding expressions for the pressure difference Ap,_, are obtained by re-
placing index 3 by index 2. In the following, simplifying assumptions are made.

4.2 Simplified relationship for Ap,_,

The relationships for Ap,-, contain the velocity ratios S,, S.,, and S, as parameters.
It seems to be reasonable to apply a correlation for well-developed flow for S, and S,.
However, quantitative information is not available for the velocity ratio at the vena contracta.
Visual observations indicate that the flow is relatively well mixed. Therefore, a value
§., = 1 was assumed. Finally, the equation of the present model (termed PM) is then given
by

_ P |G} _ - - ( L x,)
Bpiz =t G R + (- )P - GllxiR + Si0 =50 s + =21 (7]
2 1 - 1
+ % [x:R + S,(1 - x,)] (Xz + Szx’) So R+ M-l
with
05 % —1
C, =(1 +(3’l‘—) "—IVKu) : [28)
P, vV,
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To determine the velocity ratio, the correlation developed by Rouhan: (1969) 1s recom-
mended:

1 Cc* Wa x,
Sl - pL 1 _ X, (p‘” G‘ - pG ) {29]
with
W, = ﬂ3—(gcr(p Pt (30]
rel ,\/p_L L G
C*=1+0121-x), {31]

where o is the surface tension and g the acceleration due to gravity.

4.3 Simplified relationship for Ap,_,

Here parameters are S, S.,, and S;. Again it appears reasonable to use a relationship
for S, derived for well-developed flow. In the branch, however, the phase and velocity
distributions are much more disturbed due to the strong flow reversal effects. On the other
hand, the reversal in the branch could promote phase separation which could result in an
unrealistic high value of S.,. On the other hand, secondary flow effects may reduce this
separation effect. Downstream of the vena contracta secondary flow effects are much more
pronounced than in the run and a longer pipe length is required until the flow becomes
well developed.

Numerous calculations were made with various assumptions for S, S,,, and S; (Rei-
mann & Seeger 1983). The best agreement with data from air—water flow and a horizontal
branch was obtained with the assumption of homogeneous flow, that is S, = §,, = S,
= 1, and by using the following expression for Cj;:

-1

C3=(1+~Z—‘\/RT3) . [32]

3

For this case the present model reduces to a homogeneous model (termed PHM) given by

2 2
Py Gt Pas (Gs) (Gl)
Ly =TRK o B2 1 33
Apl ? P ? 2phl 2 [Ph: P [ ]

The main difference between the HM and the PHM is the factor p,,/p;,. The two models
become equal for G,/G, = 1.

5. TEST SECTION AND MEASUREMENTS

The test loop and the parameter range investigated were described in detail in Part I
(see also Seeger 1985). The test section consisted of the horizontal inlet (length L = 1.85
m), the run (L = 3.09 m), and the horizontal or vertical upward or downward branch
(corresponding length 3.2, 2.1, or 0.76 m). All pipes had an inside diameter of 50 mm.

Figure 2 shows for the horizontal branch the locations of the 19 pressure taps (2.5
mm diameter) to measure the pressure gradient along the pipe axis. These taps were located
at the pipe bottom to avoid air entrapment, all p lines were purged periodically. The pressure
differences could be measured with four parallel differential pressure transducers with
different measurement ranges. The outlet signals were time averaged in such a way that
statistically stationary results were obtained. In figure 2 typical pressure gradients for two
different mass flux ratios G,/G, are shown. Far upstream and downstream of the
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Figure 2. Measured axial pressure in a piping system with a horizontal T-junction.

T-junction there is a constant pressure gradient due to wall friction. The pressure differences
at the junction were obtained by extrapolating these gradients to the junction center. For
vertical branch directions the frictional pressure drop was determined from the measured
value taking into account the gravitational pressure difference.

6. RESULTS

6.1 Single-phase flow
Figure 3 shows the pressure loss coefficients X, and K,; for single-phase water flow.
The data are generally in good agreement with results obtained by other authors (Gardel
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Figure 3. Comparison of pressure loss coefficients X, and X, measured in single-phase flow.
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1957; Vogel 1928; Saba & Lahey 1982). The following relationships are used for the further
calculations:

K, = 0.1571 - 0.9197 % 4 10901 (ﬂ) [34]
G, G,

for 0 < K, £ 0.24 and 0.606 < K,; < 1. In the intermediate range K according to [34]
becomes slightly less than O which would result in a negative root in [28]. Therefore, in
this range K was set to K = 1.

G G\’
K3 = 1.0369 - 0.9546 —> + 1.2123 (—3) : [35]
G, G,

Of course, these relationships do not change if G,/G, is replaced by the ratio of the
volumetric flow rates V,/V,.

As mentioned in section 3.2, Saba & Lahey used for Ap, _, a relationship different
from {1] which reduces for single-phase flow to

K*
Ap,_; = —2;—2 (Gt - GY). [36]

K}, is determined from K,; by equating [1] and [36]. The solid curve in figure 4 represents
the present experiments: K}, approaches — o for G;/G, = 0. The figure also contains
the experimental results obtained by Saba & Lahey. In their model, which is only valid for
G,/G, 2 0.3, Saba & Lahey (1984) recommend a relationship independent of G,/G,.

6.2 Two-phase flow

6.2.1 Pressure difference Ap,_,. In figures 5-8 the experimental results are compared
with predictions of the following models:
-—the present model (PM) according to [27]-[31],

‘
10
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Figure 4 Loss coefficients XK.
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—the model according to [16], listed but not used in the report of Saba & Lahey (1982)
and termed Saba-Lahey Slip Model (SLSM). In the present article the momentum density
is determined using [22] and [29]-[31],

— the homogeneous model according [18] recommended by Saba & Lahey (termed SLHM).

For all cases, the ratio of the predicted pressure drop Ap,_;m. to the measured pressure
drop Ap,_;mas i presented as a function of the mass flux ratio G;/G,. Parameters are the
inlet superficial velocities v,;, and v .

For horizontal branch and air-water flow (figure 5) the SLHM gives values which
are generally too high and scatter most. The two other models agree better with the
measurements.

For steam—water flow (figure 6) the SLHM predicts slightly high values; the PM gives
a better mean value but the scatter is still great. The SLSM produces the lowest scattering
and a good mean value.

For air—water flow and the downward orientated branch (figure 7), the PM has the
highest accuracy.

The air—water experiments with the upward branch are predicted by all models with
about the same accuracy for G,/G > 0.15. With this branch orientation some of the
experiments were performed at very low values of G,/G, (figure 8). Here the PM is superior
to the other models.

Figure 9 shows for comparison corresponding graphs based on the experimental data
of Saba & Lahey (1982). The PM gives in general high values with a relatively large scatter.
The SLSM produces a small scatter but the values are generally too low. The SLHM fits
best their data.

6.2.2 Pressure drop Ap,_,. The following models are compared with experimental data:
—the present homogeneous model (PHM) according to [33],

—the homogeneous model (HM) recommended by Saba & Lahey (1982) according to [12],
—the model proposed by Chisholm (1967) (CM) using [11] and [13]-[15].

The irreversible pressure drop (Ap,_,),, is considerably larger than the irreversible
pressure drop (Ap,_,),.. This is also evident from the pressure loss coefficients in single-
phase flow; see figure 3. Therefore, (Ap,_;),, is of large importance and it is favorable to
discuss first the experiments where the total pressure drop Ap,_; is equal to (Ap,_3),,.
This is the case for G;/G, = 1, where—as mentioned before—the PHM becomes equal
to the HM. Figure 10 shows the air—water results for the horizontal branch as a function
of the inlet mass flux G, and quality x,. No model predicts satisfactorily the data. However,
the data scatter quite uniformly around a value X given in the figures, approximately
independently of G, and x,. It is interesting to note that using the steam-water data of
Fitzsimmons (1964), the HM also predicts low values (about 30%). However, the CM,
fitting these data predicts values which are about 17% too high compared with the present
measurements.

This correction factor K was used by Reimann & Seeger (1983) to modify the expression
for (Ap,_;),, in the following way:

Ap1_3 =K (Apl—s)m— + (Apl-s)m’ 4 [37]

with K = 0.744 for the HM and PHM and X = 1.174 for the CM.

Figure 11 shows the corresponding results for steam—water flow at G;/G, using [37].
The data scatter around the correct value. The dependency of the result on the system
pressure is not clear due to the small number of experiments at each pressure level. Therefore,
a more sophisticated dependence on the system pressure was not derived.

For the downward branch and air—water flow, only four test points with G,/G, =
1 were performed. Again, the agreement is reasonably good if [37] is used (figure 12).

Figure 13 shows the results for the upward branch flow: with decreasing mass flux G,
or increasing quality x, the derivations increase. For this flow orientation the phase sepa-
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Figure 10. Ratio of predicted to measured branch pressure drop for G,/G, = 1, honzontal
branch and air—water flow.
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Figure 11 Ratio of predicted to measured branch pressure drop for G;/G, = 1, horizontal
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Figure 12 Ratio of predicted to measured branch pressure drop for G;/G, = 1, downward
branch and air-water flow.
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Figure 13 Ratio of predicted to measured branch pressure drop for G,/G, = 1, upward branch

and air—water flow

ration effects 1n the branch become very important even for large distances downstream of
the branch inlet [compare Part I and Seeger et a/. (1985)]. Therefore, the assumption of
homogeneous flow is in general not justified.

Figures 14-17 show the results for split ratios 0 < G,/G, < 1. Figure 14 contains
air—water data with the horizontal branch presented previously (Reimann & Seeger 1983).
The results of the HM and CM are very similar: the models predict well the experimental
results in the range 0.6 < G,/G, < 1, but overpredict the experiments at lower values of
G,/G,. This tendency does not change significantly if the dependence K,; = f(V;/V,) is
used 1nstead of K|; = f(G;/G,). The PHM predicts the measurements much better in the
lower range of the mass flux ratio.

Figure 15 shows the comparison with the steam—water experiments. Again the HM
and CM models deviate strongly for G;/G, < 0.6. The PHM starts to deviate at consid-
erably lower mass flux ratios (G;/G, < 0.3). A systematic dependence on system parameters
can not be seen clearly.

Figure 16 contains air—water data for the downward branch. The PHM is superior in
the total range of G,/G,.

For the upward branch (figure 17) all models fail; the CM (not shown) gives values
similar to the HM. The deviations given by the PHM model are smallest (note the different
scales of the ordinate). The deviations are again caused mainly by the separation effects in
the branch which increase with decreasing branch mass flux G,

If the assumption of homogeneous flow in the branch is abandoned, i.e. [23] and [24]
are used, and .S, is determined with [28]-[31] the results shown on the right-hand side of
figure 17 are slightly improved.

Figure 18 compares the resuits of the models with the experimental data from Saba
& Lahey (1982). These authors did not perform two-phase flow measurements at G;/G,
= 1. Therefore, the correction factor X from the present experiments was used. The PHM
model gives the best mean value and the lowest data scatter. If a correction factor K = 1
1s taken, as done by Saba & Lahey, the results are shifted somewhat, but the agreement 1s
not improved remarkably

7 SUMMARY

The model presented in this article predicts better in general the experimental results
compared to previous models for all branch orientations and fluid systems. The results for
vertical upward flow, however, are not satisfactory because of the complex flow configuration
due to phase separation. Further investigations including for example, global or local void
fraction measurements, are required for this case.
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